Please do not redistribute slides without prior
permission.

)3
oool >
>
N

&

>
oooof >

DCONF '23

August 29 - September 1

A Semester at University: Teaching Software
Engineering in DLang

Social: @MichaelShah

Web : mshah.io

Courses: courses.mshah.io
YouTube:
www.voutube.com/c/MikeShah

Presentor: Mike Shah, Ph.D.
11:00-11:30, Wed, Aug. 30, 2023
Audience: Everyone!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Here's the (tl;dr)

e Using the D Language substantially improved the software engineering

course | taught
o Other faculty and trainers should take a close look at D Lang.

e Why?

o Watch the rest of the presentation

Slides available on my website
at www.mshah.io after the talk

http://www.mshah.io

Your Guide for Today

by Mike Shah

Associate Teaching Professor at Northeastern University in

Boston, Massachusetts.
o | teach courses in computer systems, computer graphics, and game
engine development.
o My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

| do consulting and technical training on modern C++,

Concurrency, OpenGL, and Vulkan projects (and hopefully b projects!)
o (Usually graphics or games related)

| like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

Contact information and more on: www.mshah.io

More online training coming at

http://www.mshah.io
http://courses.mshah.io

The abstract that you read and enticed
Abstract you to join me is here!

In January of 2023, | excitedly showed a group of over 110 university students that D is the
46th most popular programming language on the Tiobe Index (for whatever it's metrics are)--
and then told those students they would be learning DLang in the software engineering
course this semester. In this talk, | will recap my university curriculum of how | taught DLang
and why | think DLang should be considered to be taught by more faculty in universities. For
this software engineering course we made use of low level access, multiple programming
paradigms, built-in profilers, package management (dub) code coverage, ddoc, and unit
testing in order to build a half-semester long project. My conclusion is that using DLang at
university can enable students a competitive advantage versus other languages, and in this
talk I'll reflect on the curriculum, pain points, strengths, and future of D in education.

But don't take my word for it -- you'll hear from some of the students yourself on what
they built!

Software Engineering Spring of 2022 ‘

@,

The Software Engineering Course

e Titled: Foundations of Software Engineering
o Basic idea is that this is a course that will prepare
students to go on their first internship/co-op,
m and/or
o Give students who have some work experience
additional skills (individually and working on a team) and
another project for their portfolio

e Audience: upper-level undergraduates, and
masters students
o (but predominantly masters level students ~85%)

e Historically: | taught this course in Modern C++

o Other instructors at my university use Java or TypeScript
at my university -- the choice is theirs

Schedule/Road Map

Software Engineering Course Learning Objectives

e At many universities a software engineering

course can have a reputation for:
o Teaching trivia (e.g. “what is agile”)
m Important to know for software culture, we cover it
-- but it can’t be the only thing.
e (I have been asked that exact questions on
an interview before...)

e My course is built to have students build real

software in teams -- project-based learning.
o Team and human skills (ethics) must be built
o Programming skills (idioms, patterns, tools, debugging,
profiling, etc.) must be built
o Both equally important

Schedule/Road Map

| observed problem(s) in my previous course iterations

e \While students successfully were introduced or learned many tools...
o (e.g. github, gdb, static analysis tools, code coverage, CI/CD, etc.)

The ability to successfully utilize the C++ language was a barrier in a team
project

10

The C++ Learning Curve is Steep

e Most students were excited and motivated to
learn C++,

o Most students had no prior C++ experience.
o | spent lots of course time teaching C++ foundations
to try to get everyone on the same page
m We were limited to also using the SEML and
Catch?2 as our only dependencies in the course

e In student projects (teams of 4), often 1 or 2

programmers who would dominate

o If students fell behind in learning programming
techniques
m technical contributions to project would be
limited, tension could form on the human side.

Knowledge or skill

Learning Curve

Steep
learning

Maturi

11

https://www.sfml-dev.org/
https://github.com/catchorg/Catch2
https://miro.medium.com/v2/resize:fit:1400/1*kBAHDORDg0bw1g9m7h2J0g.jpeg

Interestingly...

e The feedback | got from teaching my course in

Modern C++ was:
o Exceptionally high (e.g. average of 4.8/5.0 over 3
iterations)
m Good news -- | get to keep my job :)
o Some subset of students even got C++ development
jobs at good tech companies
m Sounds like | should pat myself on the back -- but

not quite!

12

https://i.pinimg.com/originals/c1/b2/ef/c1b2ef47207816628de90a60d8ae0b4e.jpg

Something was not right with the C++ course

1. The efforts from myself and course staff far exceeded other courses | had

developed

a. 20+ hours per week on one course -- (often debugging and reteaching C++)
i. How can | manage my 2 other courses, research, service, conference talks, etc.?

2. C++ is a massive language

a. It hasits own pros and cons -- but it was not a great choice of a language for the course.

b. Students who fall behind in any technical aspect of the course, can’t really catch up
I. This leaves more gaps in learning
ii. Students are in a more frantic or high-stress mode when trying to learn.

3. The original reason(s) for using C++ was the lack of C++ being taught in

university
a. (...and my own professional background using the language)

13

Change needed to be made

e | had some amount of guilt abandoning C++ which | was
known for
o Some subset of students would never learn C++ in

university
o It seemed reasonable to push onwards on C++
m But 3 semesters of evidence was enough for me to
see students clawing their way through syntax versus
building software

14

Software Engineering Spring of 2022 ‘

@,

DConf "22: Ray Tracing in (Less Than) One Weekend with DLang -- Mike Shah

1.1K views + 10 months ago

0 The D Language Foundation

Peter Shirley's book 'Ray Tracing in One Weekend' has been a brilliant introduction to implementing ray tracers for beginners.

) ‘ Title and Introduction | Overview | A definition of ray tracing | The ray tracing algorithm | Ray tracing... 33 chapters v

Summer of 2022 | reveal I'm using DLang in a programming
language-agnostic course on ray tracers

My own personal projects and tools also simultaneously being
converted from Python to DLang

16

@,

Fall of 2022 we got some visitors! ‘

Fall of 2022

e Ali Cehreli (and Steven Schveighoffer)
visited Northeastern University to meet

students and give an Introduction to D

o We had a very enthusiastic group of students
(and faculty) Who attended Invited Speaker Ali Cehreli, Introduction to Dlang

e [his encouraged me further that Invited Speaker Ali Cehreli, Introduction to Dlang
students would be responsive to a new https://www.youtube.com/watch?v=0JL9uT XGZE
language for a software engineering
course

18

https://www.youtube.com/watch?v=0JL9uT_XGZE

Industry Proven

NETFLIX eb va funkwerk))) Symmetry A \N WEKA
Further Ruminations on D e St Sl

e Before committing to the language for Spring of 2023 | reflected on the many

potential positives:
o D ecosystem had nearly everything in one place
m D had multiple compilers for stability (dmd, gdc, Idc)
gdb or lldb available to teach debugging
Profiler available (-profile, -profile=gc)
Package manager (dub)
ddoc (documentation)
e package manager, code coverage, profiler,
unittest for teaching testing
m Multiple paradigms (could show benefits of functional programming, generic design, OOPP
patterns)
m Can talk about static analysis (dfmt, scanner)
m Can talk about compile-time versus run-time
e \ery importantly, D was industry proven
o Our university students are pragmatic -- I'm lucky to teach in such a culture.
m Our students do look on indeed.com , university job postings, etc. expecting Dlang however!
m Thisis one area | hope to see more job postings on (more on that later)

19

by
Utah Va /
n WU
A\ —
: \ - chico escuela | Books | credit where credit is due | Pre-History | 2003-2008 | All D-velopers Love...|.. 9 moments

DConf 2014 Day 1 Talk 3: A Real D in Programming - Chuck Allison

241 view:

e There was also precedent for 4

teaching DLang

o Chuck Allison (Utah Valley University)
led the way (as early as 2014) in his Al D—velopers Love...

programming languages course using

- The CS Emphasis | Homework Assignment 1 FP Assignment (Repeat of ML Assignment) | Pure,.. 8 moments '

DLang _ _ D compiles to native code Universal Function Call Syntax
m (Aside: | found Professor Paul Buis

at Ball State in 2015 also offers a (Optional) Garbage Collection Compile-Time Function Evaluation

D lang workshop [link]) Module System Mixins (string and template)
Slices unittest
Associative Arrays Contract Programming
static if debug

20

https://dl.acm.org/doi/pdf/10.5555/2831373.2831381

Critically -- Identified Freely Available Resources

e D being a smaller community, it was important to have resources for students

to turn to.

DLang Tour Welcome

Welcome to D @

to the i ive tour of the D
The tour gives an overview of this powerful and exp: 1 which directly to efficient,
native machine code.
What is D?
D is the culmination of decades of le i1 ilers for many diverse and has

a unique set of features:

» high level constructs for great modeling power

« high performance, compiled language

* static typing

« direct interface to the operating system API's and hardware

* blazingly fast compile-times

» memory-safe subset (SafeD)

* maintainable, easy to understand code

 gradual learning curve (C-like syntax, similar to Java and others)

» compatible with C application binary interface

 limited compatibility with C++ application binary interface

. 1ti igm (imperative, object oriented, generic, functional
purity, and even

 built-in error detection (contracts, unittests)

... and many more features.

v DbyExamplesv DUBpackages~

PR Run Format # | ResetD

1 import std.stdio;
2 import std.algorithm;
3 import std.range;

4

5 void main()

6 {
7
8
9

11

// Let's get going!
writeln("Hello World!");

// An example for experienced programmers:
// Take three arrays, and without allocating
// any new memory, sort across all the

// arrays inplace

int[] arrl = (4, 9, 7];
int[] arr2 = [5, 2, 1, 10];
int[] arr3 = (6, 8, 31;

sort(chain(arrl, arr2, arr3));
writefln("$s\nss\nts\n", arrl, arr2, arr3);
// To learn more about this example, see the
// "Range algorithms" page under "Gems"

00

Export

https://tour.dlang.org/

o

Thtnrsl arvd Rpde

=
=
(-]
=
=
=
=
&S
£

http://ddili.org/ders/d.en/

21

http://ddili.org/ders/d.en/
https://tour.dlang.org/

Some Final Inspiration -- DLang’s fit a teaching language

e To other faculty: D has a very interesting potential to scale throughout the

university curriculum
o It could probably be utilized in a CS1 course through advanced graduate courses.
o The quote below is from Ali's book Programming in D from Andrei Alexandrescu

I've long suspected D is a good first programming language to learn. It exposes
its user to a variety of concepts — systems, functional, object oriented, generic,
generative — candidly and without pretense. And so does Ali's book, which seems
to me an excellent realization of that opportunity.

Andrei Alexandrescu
San Francisco, May 2015

22

http://ddili.org/ders/d.en/

@,

Fall of 2022 we got some visitors! ‘

First week of class -- Spring 2023 ‘

First week of class -- Spring 2023 Q

and movie)

https://media3.giphy.com/media/v1.Y2lkPTc5MGI3NjExeHZyN2ZhMHNhcjB4c3RleW8yMG81eHZuYzRnNjlyM2F5YXE1d3k3ciZlcD12MV9naWZzX3NlYXJjaCZjdD1n/3P0oEX5oTmrkY/giphy.gif

One of the first slides introducing DLang in my course

| ask my students if
anyone had heard of
the D programming
language (DLang)

o There were maybe 1-2
students who raised
their hands out of 110
students

o (A handful had also
looked at D from my
course page)

Question to the Audience

e What have you heard?
o Have you heard of DLang?

26

The next slide...

e | ask my students how
many have heard of
C++

o Of course -- many
students hands raised
up quickly

o Many students were
also aware | had
previously taught
iterations of the course
in Modern C++

Question to the Audience (1/2)

e How many have heard of C++?
o How many have used C++?

27

Undergraduate and Masters Students Frame of Mind (1/2)

So...my next slide | told
students they are not going
to be learning C++, but the
46" most popular language
-- DLang

o The language many students
had not heard of!

TIOBE Index for January 2023

January Headline: C++ is TIOBE's Programming Language of the Year 2022!

Cov is TIOBE'S Programming anguage of the year 2022, It has won this Utle because C++ gained MOST POPUIArity (+4.82%) in 2022, Runners up are C (*3.82%) and Python
(+2.78%). Interestingly, C++ surpassed Java 10 Decome the number 3 of the TIOBE index in November 2022. The reason for C++'s popularity is its excellent performance while
Daing & high level object-orented language. Because of this, it is possibie to develop Tast and vast software systems (over millions of lines of code) in C++ without

PECONSATILY eNGINE UP (N A MANtenance Nightmare

Another reason for C++'s rise & its “recent™ and constant pudlication of new language stancdards with interesting features. The firet land mark was called C++11, Published in
2011, it was the finst considersbie change since 1908, The adoption of this new standard took & few years because there were no C++ compilers available to support the new
IANEUAEe ORTIItION, Beoause Of Cretl, Cov wink slowly Eoing wphill In the TIOBE Index AMer Raving been in & CONSTANT dectine Kince 2001 The §600Nd Lend mark I the eeent

C++20 publication, which for instance introduced modules. It will probably URt C++ further in the TIOBE index 1or the nest few years

42 Awk 019%
43 prolog 018%
44 CFML 017%
45 Haskell 07%
46 D 016%
47 LabVIEW 015%
48 Scheme 015%)
49 ABAP 0.34%
50 OCaml 034%

28

Was | nervous at this
point?

29

e You have to put yourself in the mind of a student:
o Many are upper-level undergraduates or masters students

o Students are very job focused -- they are at a school that requires
and has a strong co-op/internship program

Was | nervous at this
point?

30

Was | nervous to use DLang for a software engineering course? (1/3)

31

Was | nervous to use DLang for a software engineering course? (2/3)

e No.

32

Was | nervous to use DLang for a software engineering course? (3/3)

e No.
e Why?

o Because as a teacher, professor, or engineer -- you must choose the right tool for the right job
with the information you have.
o My responsibility is to train future engineers to build reliable and performant systems
m | believed D unlocked that opportunity to do so
e It's not a perfect language (no language is)

(@)

But the mere fact that D has @safe for instance makes an interesting
discussion in class on writing safe software and motivating testing.
Or the mere fact that we can use pointers when building a library

Or the mere fact that we can ... (and on and on)

33

(Aside)

e As of August 2023 -- DLang has moved up to 33 (from 46) by the way!
o Choosing a tool is not a popularity contest!
m And | want other professors and professionals to know that when using DLang!
m Choose the right tool

Position Programming Language Ratings
29 Objective-C 0.52%
30 Lisp 0.51%
31 Scala 0.50%
32 Haskell 0.48%
33 ‘ D 0.47%
34 Lua 0.47%

35 Dart 0.43%

Curriculum and Assignments

35

Assignments and Project

Six assignments individually completed
in the first 7 weeks of the course

(@)

Goal is to have individuals become competent
D programmers in about 2 months time

One team project (4 programmers) with
about 11 milestones throughout the
remaining 7 weeks of the semester.

(@)

Goal is to have individuals come together as a
team to build something larger (reflecting the
real world)

Inspired directly by my Statements of Work
(SoW) from my personal 10-12 week
consulting contracts

DLang Tour Welcome~ DsBasics> DsGemsv Multithreading> Vibed~ DbyExamples~ DUB packages

Welcome to D

Welcome to the interactive tour of the

overview of this powerful and expressive language which compiles directly to efficient,

Assignment1_dlang

Assignment2_DataStructure
Assignment3_Debugging
Assignment4_SDLC

Assignment5_Dub_Patterns

Assignment6_Testing

e D Programming language.

Week

Date Lecture and Readings Assignments
Wednesday 22| Module 1 - Course Introduction, DLang A1 - D Exercises -
- January 11, out (Due Jan. 20
2023
)
Wednesday 2~ Module 2 - Programming Idioms and Memory A2 - Code Review
- January 18, and Data
2023 Structure (Due
Jan. 27 Anywhere
1 Earth)
Wednesday .| Module 3 - Debugging in DLang A3 - Debugging
- January 25, (Due Feb. 3
2023
)
Wednesday "2 Module 4 - The Software Development Life Cycle (SDLC) A4 - Software
- February Case Study/User
01, 2023 Stories (Due Feb.
10 ywnere ol
arth)
Wednesday 2 Module 5 - Design Considerations and Design Patterns 1 A5 - Dub Design
- February Pattern (Due Feb.
08, 2023 19 ¢
)
Wednesday 2 Module 6 - Structural Testing and Functional Testing AB - Testing (Due
- February Mar. 1 Any
15, 2023 on Earth)

o SRR

Module 7 - Networking and Final Project Overview

Next 7-8 Weeks

e Students ramping up on D
language and other critical
tools while building a project

o o0 O O O O O

Dub - package management
Continuous Integration
Profiling

dscanner, dfmt (d format)
SDL (bindbc-sdl)

gtkD - GUI library

Design Patterns

Wednesday
- March 01,
2023

Wednesday
- March 08,
2023

Wednesday
- March 15,
2023

Wednesday
- March 22,
2023

Wednesday
- March 29,
2023

Wednesday
- April 05,
2023

Wednesday
- April 12,
2023
Wednesday

- April 19,
2023

" Module 8 - Exam on canvas online -- no in person class

Module 9 - No Class
Module 10 - Program Analysis and Code Refactoring
Module 11 - Design Principles for User Interfaces

[»

Watch later Share

(Aside: You'll see more from the students)
Student Project - 7 to 8 weeks

e A collaborative paint Application!
o Based off of https://limnu.com/
o https://www.youtube.com/watch?v=71L-cuQB
gsE&feature=emb _title (34 seconds)
o Areal world startup company that was
acquired for $$$ with a real product
m Good motivation to students
m We learned from Ucora earlier --
motivation is everything!
e Students would exercises skills in
o Design patterns
o Networking (today’s topics)
o Non-trivial Testing (e.g. pixel and networking)
o Algorithmically interesting (i.e. brushes, flood
fill, queueing work, etc.)
o Challenging, but can build an MVP and see
feedback!

@3 YouTube

https://limnu.com/
https://www.youtube.com/watch?v=71L-cuQBgsE&feature=emb_title
https://www.youtube.com/watch?v=71L-cuQBgsE&feature=emb_title

Where Students Struggled and Excelled

(Professor Perspective)

Where did Students Struggle? (1/2)

e There were initial struggles with DLang regarding finding specific

documentation

o Insome respect | had to vet specific libraries that were actively maintained as best as | could.
m For myself -- the first run through a course always has some aspect of this

e Some difficulties working across Mac (intel), Mac (M1/M2), Linux, Windows
o Students have different operating systems that must be supported
o Using lldb versus using gdb
m Some resolved by having releasing training videos
o Personally, this is part of software engineering, but | try my best to align students to similar
platforms

e |Initial difficulties getting IDE’s setup (VSCode and IntelliJ)

o Many of which | believe have some solution -- though may not have been easy to setup

41

Where did Students Struggle? (2/2)

e Some student struggles are natural in the sense of ... well students learning

software engineering
o Learning tools, organizing a team, collaborating using git, etc.

e Some struggles learning how to rely on documentation and the spec as the

ground truth when tutorials do not exist (reasonably hard skill to acquire!)
o The feedback was that this was strictly because of using DLang (and there are indeed often
less tutorials)
o The reality is | cannot (and did not to the best of my knowledge) tell students they would
have this same difficulty with C++, Java, TypeScript, etc.
m As an instructor however, you serve as an oracle -- so | must be prepared to fill any gaps
however :)

42

Where I'll Improve this Fall 2023

e Assignments/Labs will of course be refined
e Students will have more video resources

© YouTube: 67.V|deOS produced in 1 year . https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv
m More videos on ecosystem (e.g. debugging, IDE setup, GScY ufd8ao-3cBAC NS WOE A VBinges

etc.)
e | expect over 100 videos by next years DConf.

o | encourage the D community to turn the

camera on as they code, review code, etc.
m Repeats of the same topics from different perspectives
or new use cases are useful for beginners!

e |earning D will be recommended for course reading

alongside Ali’'s Programming in D
e Thank you to those in D community doing bug
fixes, making new tools, and maintaining new

bindings to libraries.
43

Pt aeaiy

Learning D

https://www.packtpub.com/product/learning-d/9781783552481
https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV&index=1
https://www.youtube.com/watch?v=HS7X9ERdjM4&list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV&index=1

Course Postmortem

44

Things that did and did not matter in choosing D (short list)

e D had ‘rdmd’ for quick prototyping

o This mattered greatly when introducing D to students -- D was as easy as Python to get started.
e D has better error messages than C++

o This was very, very important -- huge win for the entire course staff (teaching assistants)

e D has a garbage collector
o No student (to my knowledge) voiced this as a negative.

m This was a strict win for me in ramping up students -- many coming from Java this was natural.

o | showed them malloc/free however
m Introduced another software engineering trade-off (the whole point of the class in fact!)
e D taught students to work with dependencies (C libraries)
o This taught students how to work with dependencies and cross language boundaries, potentially
building abstractions around them -- | really like this as a lesson in a software engineering course

e Students had to do networking in a project without a prior to a networking

course
o They could figure it out, std.socket a reasonable interface with a lecture and example code.
o Skill | personally learned at a startup -- you just need to learn stuff as you go

45

It took great patience....

But as | watched students proceed in the course, | had to wait until the very

end of the semester
o They were all excelling far beyond previous semesters.

The worst project using DLang was on par (or better) than the best

project in the combined three previous iterations of my course in C++
o Why?
m Students on level playing field in new language
m DLang overall easier to work with and quicker to iterate (DMD builds fast!)
There were also unexpected benefits for this specific iteration of students

o Having to navigate the dlang specs, documentation, read library source code, and go into a
‘new course that was not 100% smooth’ emulated the software engineering experience better

than | could have planned.

46

Why | will continue to teach with DLang at
University

DLang at Universities

e DLang is a language that can scale throughout the entire university curriculum

o | strongly believe | could teach a first semester course in DLang
m (e.g.using rdmd or dmd -run)
o | believe the potential to use DLang in nearly any course in our university curriculum.
m It's a general-purpose language supporting many paradigms and high-level and
low-level facilities.
o | choose DLang because | believe it is a complete package for software engineering
m Support built into DLang: profiling performance and memory, Documentation (DDoc),
unit testing (-unittest), code coverage, package management (dub), are amongst just a

few of the features every software engineer should have available and know how to use.

48

Some Advice to other Faculty Adopting DLang

e Give students notice on the switch:
o | displayed on my webpage several weeks ahead of time (around course registration) that |
was switching the language to DLang
o Ithink it is good to be up front with students as early as possible
e Know your university culture:

o e.g. | had faculty backing me that learning a new language is an advantage even if you do not
use it.

e Reach Out:

o If you're a faculty considering DLang -- reach out to me after watching this talk

e Let’s have Academia + Industry work together (That’s you DConf!):
o We had 2 students hired from my course specifically for D programming -- there will be new
and talented D programmers ready in the Fall!

49

The next presentation...

e At the end of the semester | brought up DConf to one of the best

groups in the course

o | only told them be honest in their experience using the language
o They will show you the project that was created
o And I'm very excited to hand the stage over to them....

50

DCONF '23

August 29 - September 1

A Semester at University: Learning Software
Engineering in DLang

Presenters: Andrew Briasco-Stewart, Elizabeth
Williams,Ben Mallett, and Steven Abbott

11:30 am-12:00 pm, Wednesday, August 30, 2023
Audience: Everyone in the D community

51

Your Guides for Today

Andrew Elizabeth
Briasco-Stewart Williams

Steven
Abbott

Ben
Mallett

52

Agenda

Intro

Initial Reactions

Learning in D

Exciting Features

Project Overview
Leveraging Dub

Project Conclusions

How much of D did we end up experiencing?
What did we miss out on?
Going Forward
Conclusion

53

Introduction

e Graduate and undergraduate Northeastern
University students.

e Took Mike Shah's Foundations of Software
Engineering class in the Spring of 2023.

e Foundations of Software Engineering was our l

H H . "(u&"'vv';:,\\\ T ’ \\
first experience using D. ALY 7\
P J /i A\ A\

54

Disclaimer:
We were/are still new to D!

55

Initial Reactions and Learning D

56

e First thoughts
o Whatis D?
o D resources?
o Where is it used?
e Hesitations
o Never heard of D before coming into this class.
o Realizing that the D community is small.

Initial Reactions ID ’

57

What Does Learning D from Scratch
Look Like for the Average Programmer?

Dlang Tour

Lang Tour Welcome v

Gemsv Multithreadingv Vit

v DbyExamplesv DUB pacl

[¢X>)
Welcome to D = o B rowar | weses | mpone

1 import std.stdio;
2 import std.algorithm;

Welcome to the interactive tour of the D Programming language. 3 import std.range;
The tour gives an overview of this powerful and expressive language which compiles directly to efficient, native machine code. 5 void main()
6 (
// Let's get going!
What is D? Ciaiel

writeln("Hello World!");

Disth i of decades of i ‘many diverse languages and has a unique set of features // an example for experienced programmers:
// Take three arrays, and without allocating
// any new memory, sort across all the

// arrays inplace

int(] arrl = (4, 9, 7

int[) ars2 = (5, 2, 1, 10];

int[) arr3 = [6, 8, 3); 1 1
Example 1 - Inline unit tests
writefln("$s\nss\n%s\n", arrl, arr2, arr3);

‘maintainable, easy to understand code // To learn more about this example, see the
gradual learning curve (C-like syntax, similar to Java and others) 2 // "Range algorithms" page under "Gems
compatible with C application binary interface 21y

limited compatibility with C++ application binary interface

‘multi-paradigm (imperative, structured, object oriented, generic, functional programming purity, and even assembly)

built-in error detection (contracts, unittests)

About the tour

« high level constructs for great modeling power

‘high performance, compiled language

static typing

direct interface to the operating system API's and hardware
blazingly fast compile-times

memory-safe subset (SafeD)

Each section comes with a source code example that can be modified and used to experiment with D's language features. Click the run button
(or Ctri-enter) to compile and run it

unittest

{

To navigate this tour, either use the * < previous” and "next > links at the bottom (or left and right arrow keys), or else go straight to
particular sections using the menus at the top.

assert(myAbs(-1)
assert(myAbs(1)

Dlang Tour

Example 2 - UFCS, Templates, Example 2 - Contract Programming
and Delegates... Oh My! (infout)

e00

void main()

{

string text = g{This tour will give
you an overview of powerful
expressive systems programming
language which compiles directly
to efficient, *native* machine code.};

alias pred = ¢ => canFind(" ,.\n", c);
words = text.splitter!pred
.filter!(a => l'a.empty);

wordCharCounts = words
.map!(a => a.count);

zip(wordCharCounts, words).array()
.sort().uniq().chunkBy!(a => a[0])
.map!(chunk => format("%d -> %s",
chunk[0], chunk[1].map!(a => a[l])

.joiner(", "))).joiner("\n").writeln();

long square_root(long x)
in {

assert(x >= 0);
} out (result) {

assert((result * result) <= x

&& (result+l) * (result+l) > x);
{
cast(long)std.math.sqrt(cast(real)x);

60

D YouTube Search a e = A

Other Resources We Used R —

All Videos Shorts

CETTRCTTEA [Dlang Series Teaser] Dlang versus Python speed

— . matrix.py comparison (Matrix Multiply)
matrix.py matri Mike Shah - 2K views 10 monihs ago
matrix.
. s < Dlang versus Python (Matrix Multiply) #shorts series intro
D Learn Documentation v Downloads Packages Community v Resources v D L an Q 3 Mike Shah + 1K views + 10 months ago
-
Forums D Language (DLang)
. [Dlang Episode 1] The D Programming Language - dlang
Programmlng 3 Mike Shah « 3.2K views + 10 months ago
D Programming Language Forum
58 videos 8821 views Updated today

P

e 2) |DEANG '"SW“A‘ [Dlang Episode 2] D Language - setup on Linux (dmd, gdc,
— Linux and Idc2 shown!)

Mike Shah + 1K views + 10 months ago
» Playall >3 shuffle

Afull playlist on learning the D Programming
language. A great starting place for beginners to
start, as well start from the very beginning. This
playlist will also move towards more advanced

features of the language as well ~ find it all here!

DLang Install [Dlang Episode 3] D Language - setup on Mac (Shown on
LLLUEERE Mac M1, DMD and LDC2)

Mike Shah + 664 views * 10 months ago

4 DLang Install [Dlang Episode 4] D Language - DMD command line and
G Visual D for Visual Studio (DMD and LDC2)

Assignmenti_dlang
Assignment2_DataStructure
Assignment3_Debugging

Assignment4_SDLC

al and Reference

Ali Gehreli Assignment5_Dub_Patterns

(=)
=
o)
=
=
—
=
oc
(o)
(=]
(==
o

Tuto

Assignment6_Testing

n void main() {
Earl Pro ramS In D' auto rnd = Random(unpredictableSeed);
n auto guessMe = uniform(0, 11, rnd);
writeln("Guess a number between 0 and 10: ");
int guess;
int guessCount = 0;
while (guess != guessMe) {
guessCount += 1;
20 guess = tol!int(readln().filter!(charToCheck => !charToCheck.isWhite()));
if (guessMe > guess) {
writeln("Nope! Guess a bit higher");
unittest { } else if (guessMe < guess) {
auto myDeque = new Deque!(int); writeln("Nope! Guess a bit lower");
for (int © = 0; 1 < 20; i++) { }elset{ —— Count - - »
= ; ; auto guessStr = (guessCount == ? uess E liessesE;
assert(myDeque.size() == 1); \;n‘LLefn(”Btngo! Yéu win! It took you ? guessCounL? et guéssSLr, R
myDeque.push_front(i);

// Basic Program showing usage of Drinks.
void main() {
// Make a tea drink.
Drink t = new TeaDrink();
Drink tea = new Boba(t)
writeln(tea.description
writeln(tea.cost);

)5

Drink d = new DrinkBuilder(new WaterDrink()).addCream.addIce.addBoba.addSugar.build();
writeln(d.cost);
writeln(d.description);

Takeaways From Initial Learning

Growing Excitement.
Garbage Collection - Easy.

Memory Safety - Somewhat challenging.

Several Different Paradigms - Easy.
o OOP, Imperative, Functional.
Interop with C - Nice to have.
Localized Imports, interesting.
Mixins - complex, but powerful.

63

Our Project

Project Overview

Networked drawing app.

o Real-time editing.
Programmed in D.
7-8 Weeks.

Agile development
methodology.
Simple install and run.

65

https://docs.google.com/file/d/1K4yfO3USssjeOZllRhhUHdo2RgutWwOG/preview

MVP: SDL — GtkD SDL

Simple Directmedia Layer

e Started with a single person blank

canvas for basic drawing (MVP) in SDL.

e Inability to combine SDL window
with GtkD on Macs.

e GtkD has built-in widgets.

e D and GtkD work well with
object-oriented programming.

e Learning GtkD was no harder than
learning any other new GUI tool.

66

Networking

Simple Client-Server Architecture.

e Client renders in one thread,
handles packets in another.

e Server leverages SocketSet to
efficiently manage connections and
incoming packets.

e Networking in D is incredibly simple.

e Message passing and abstracted
data structures enable simple, rapid
development.

67

(bool active = true; active && network.isSocketOpen();)

{
&)

network.sendToServer(packet);

char[PACKET_LENGTH] message; 10 (immutablelboo ke hutdown i

recv = 0;
.socketOpen) active = false;
}, (OwnerTerminated error) {

.sock.receive(message);
active = fa

}s

Tuple! (char[PACKET_LENGTH], long)(message, recv);

msgAndLen = network.receiveFromServer();

(msgAndLen[1] > 0)

string encodedMsg = to!string(msgAndLen[0]);
immutable long recvLen = msgAndLen[1];

Cllent Receptlon send(parent, encodedMsg[0 .. recvLen], recvlLen);

Message Passing

recv = receiveTimeout(TIMEOUT_DUR, (string packet) {

68

void pollForMessagesAndClients()

{
(Socket.select(.sockSet, null, null))

(.sockSet. isSet(.sock))

Socket newSocket = .sock.accept();
handleNewConnection(newSocket);

i

int[] curKeys = .connectedClients.keys();

foreach (key; curKeys)

{
Socket client = .connectedClients[key];

(.sockSet.1isSet(client))
{
handlePacketReception(client);

5

Server via SocketSet

69

Priority Number 1:
Good Development Practices, CI/CD and
Dub

Cl/CD - What did we want?
1 - Set up a CI/CD system via GitHub actions #3

IRV -l ben-mallett merged 39 commits into master from 1-set-up-a-cicd-system-via-github-actions (0Jon Mar 22

) Conversation 4 -o- Commits 39 Fl Checks 6 Files changed 16

@ StevenAbbott commented on Mar 21 = edited «

Configured Github Actions to:

* Enforce code formatting via dfmt

® Run unit tests and enforce that all unit tests pass

* Generate coverage files and enforce that all files have 100% test coverage (we can lower this later if needed)
* Generate ddocs

® Generate deliverables for windows, ubuntu-20.04, and macOS

How Did We Achieve That?

DUB Setup

1,
"buildTypes": {
Udocs i
"buildRequirements": [
"allowWarnings"

1,

e dub.json file for client, server, and
client-and-server.
e Helped us manage dependencies:

"client/source/app.d",
"server/source/app.d

”client/source/client:cov,app.d
O gtk-d "server/source/server_cov_app.d
}
I b,
O unlt-th readed "configurations": [
{

"name": "docs",

e Simple install and run. targerrype s Focectante,

“client/source",
"server/source"
1,

"excludedSourceFiles": [

Packages Documentationv Aboul Download “client/source/app.d",
"server/source/app.d",
"client/source/client_cov_app.d",
"server/source/server_cov_app.d"
Installing DUB 1,
"dependencies": {
DUB is the D language's official package manager, providing simple and configurable cross-platform builds. DUB can also generate VisualD and Mono-D package <-d:gstreamer" ~>3.10.0",
files for easy IDE support. :gtkd": "~>3.10.0",
To install DUB, search your operating system's package or download the pre iled package for your platform. The Windows installer will perform all $ peas": "~>3.10.0",
installation steps; for other archives, you will want to ensure the DUB executable is in your path. Installation from source on other platforms is as simple as sv': "~>3.10.0",

installing the dmd development files and your system's libcurl-dev, then running ./build.sh in the repository's folder. <-d:vte": "~>3.10.0"

Unit Testing

/7&*
* Testing the isValidUsername() method with valid usernames.

("Testing isValidUsername valid")

("Mike Shah"));
ne("Rohit"));
rname("Bob"));
ne("Userl2"));

* Testing the isValidUsername() method with invalid
us&ynames.
@("Testing isValidUsername invalid")

ne(null));

Mike"));

“\n")):'
e ("\t\t\r"));

bool isValidUsername(string username)

(username is null)

false;

= regex(r"~[-a-zA-Z0-9-()]+(\s+[-a-zA-Z0-9-()]+)*$")

lusername.equal("") && matchFirst(username, r);

Packages Documentationv ~ Aboutv Download Login

unit-threaded

Advanced multi-threaded unit testing framework with minimal to no boilerplate using built-in unittest blocks

To use this package, run the following command in your project's root directory:
dub add unitthreaded &

Manual usage

Put the following dependency into your project's dependences section:

dub json
"unit-threaded": "~>2.1.7" &

dub.sdl
dependency unit-threaded" version="~>2.1.7" | B

Time taken: 9 ms, 273 ps, and 8 hnsecs
24 test(s) run, 0 failed.

OK!

74

CI/CD - What Worked and What Did Not?

.4 Code formatting — dfmt
L4 Unit tests — unit-threaded
Code coverage threshold—wrote our own script
.4 Generate docs — harbored-mod
X Generate cross-platform deliverables - GtkD and github actions foiled this

75

Conclusion
Project Wrap-Up and Closing Remarks

Room For Improvement

77

DUB Pros and Cons

e Pros &
o Made package management easy.

o More professional project.
o Allowed us to create documentation easily.
o Nice to use — it aided our development.

e Cons (=
o Lack of documentation and resources on how to properly set up a

project with DUB.
o Someone should write a coverage-aggregation tool.

78

Dub Docs - The Bane of My Existence

@& dub.pm/package-format-json

@
D
»

Build settings

Build settings influence the command line options passed to the compiler and linker. All settings are optional.

Platform specific settings are supported through the use of field name suffixes. Suffixes are dash separated list of operating system/architecture/compiler identifiers,
as defined in the D language reference, but converted to lower case. The order of these suffixes is os-architecture-compiler, where any of these parts can be left off.
Additionally on Windows the architectures x86_omf and x86_mscoff can be used with dmd to differentiate between 32 bit object formats used with the --arch
switch. Examples:

{ id
"versions": ["PrintfDebugging”],
"dflags-dmd": ["-vtls"],
"versions-x86_64": ["UseAmd64Impl"]
"libs-posix": ["ssl", "crypto"],
"sourceFiles-windows-x86_64-dmd": ["libs/windows-x86_64/mylib.1ib"],
"sourceFiles-windows-x86_omf-dmd": ["libs/windows-x86_omf/mylib.1ib"],
"sourceFiles-windows-x86_mscoff-dmd": ["libs/windows-x86_mscoff/mylib.1ib"],

}

Name Type Description

dependencies T[string] List of project dependencies given as pairs of "<name>" : <version-spec> - see next section for what version
specifications look like - this setting does not support platform suffixes

systemDependencies string A textual description of the required system dependencies (external C libraries) required by the package. This will be
visible on the registry and will be displayed in case of linker errors - this setting does not support platform suffixes

targetType string Specifies a specific target type - this setting does not support platform suffixes

targetName string Sets the base name of the output file; type and platform specific pre- and suffixes are added automatically - this setting
does not support platform suffixes

targetPath string The destination path of the output binary - this setting does not support platform suffixes

Classes and Module System

e Modules based on directories and
file/class names.
o Example: module
controller.commands.Command
e Used classes (DrawArcCommand) and

abstract classes (Command).

controller public class AppBox : Box
model

util AppBox used to arrange myDrawingBox using the notion of packing.

« drawingBox : MyDrawingBox : the drawing box of this component

Constructs an AppBox instance.

Gets myDrawingBox.

Returns

« drawingBox : MyDrawingBox : the drawing box of this component

Project Files «

v
>
>

v

lo]
»l«

~/Documents/GitHub/DRaw

>

v

.github
.idea
client-and-server
.dub
bin
client
.dub
bin
coverage

v v

b source
controller
model
util
view
& app
© client_cov_app
@ client_move_coverage_files
> views

v Vv v v

{3 dub.json
13 dub.selections.json
doc
images
server
> .dub
> bin
coverage
A source
> model
& app
&) server_cov_app
@ server_move_coverage_files
{ dub.json
1 dub.selections.json

“Auhican

80

Learning GtkD

! gtkDm

gtkDcoding

AR
WINDOW |

A~

a site
tk])=
. sore
coding skode

index

Modules

atk

module atk

cairo
module cairo

About Posts in Date Order Blog Posts by Topic

—

Friday, January 11, 2019
0000: Introduction to GtkDcoding

An introduction to GTK 3 and how it can be used to create Graphical User Interfaces
(GUD) for applications - a D language tutorial,

esday, January 15, 2019
0001: Introduction to the Test Rig

Introduction to the GTK TestRig window and how to install syntax highlighter fles
for PSPad and CodeBlocks - a D language tutorial

Documentation
« API Reference

Comprehensive AP reference documentation for GtkD libraries.

o Wiki

The public wiki is located on the github project page. It's content is still very limited, but anyone can quickly contribute interesting links or knowledge there.

Tutorials
+ gtkDcoding

An ongoing blog series by Ron Tarrant with numerous small tutorials on various gtkD subjects.

* GExperts

Blog posts about GtkD by Gerald Nunn made while developing the successful Tilix terminal emulator.

Namespace

Gdk-4.0

The GTK toolkit

Version 4130
Authors GTK Development Team

License LGPL-21-or-later

Website ~https;//www.gtk.org

Source https://gitlab.gnome.org/GNOME/gtk/

Build

Cheaders gdk/gdk.h

pkg-config files gtk

Download

Documentation

Namespace

Gtk-4.0

The GTK toolkit

Version 4130
Authors GTK Development Team

License LGPL-21-or-later

Website ~https;//www.gtkorg

Source https://gitlab.gnome.org/GNOME/gtk/

Build

Cheaders gtk/gtk.h

pkg-config files gtk

Development Support

81

Lack of Tooling - Coverage Aggregation

Search results for: coverage

Package Latest version Date Score Description

doveralls 141 2020-Nov-02 2.8 Upload D code coverage results to coveralls.io.

covered 1.0.2 2019-Mar-17 16 Processes output of code coverage analysis

liblstparse 112 2020-Sep-20 0.6 A simple parser for LST coverage files

coverd 1.0.0 2016 =12 0.5 Code coverage HTML reporter for language D listings

d-cobertura :1.0.0 _ 2"021-Aug-3"0 04 A program to automatically convert d-style coverage reports to XML cobertura-style ones.
uncovered 0.1.0 2020J ﬁl-20 0.0 Summary tool for coverage listing files.

Found 6 packages.

82

What Did We Love?

So How Much of D Did We Actually Touch?

Delegates

Functional Programming

UFCS

Message Passing

Version Tags

Parallel (In-built)

Classes (Networking)

Library Ecosystem (GtkD, SDL, etc)
Unit Testing

Dub Ecosystem (Package management, CI/CD, etc)
Memory Management

84

Message Passing

Simplifies code dramatically.

Promotes safety and SOC.
Implementation is quick.
Fewer hungry philosophers.

85

Dub Ecosystem - The Goo

Great for package management.
Great for CI/CD utilities.

Flexible.

Simple when configured properly.

Packages ~ Documentation v

Welcome to DUB, the D package registry.
Total 2379 packages found.
Select category{ — V]

Most popular

@ 9) Better test runner for D

by Anton Fediushin

vibe-d
Event driven web and concurrency

framework

by Sénke Ludwig

unit-threaded
Advanced multi-threaded unit
testing framework with minimal
to no boilerplate using built-in

by Atila Neves

arsd-officia
Subpackage collection for web,

database, terminal ui, gui,
scripting, and more with a
by Adam D. Ruppe

ywnload Log in

Recently updated

ultralight [EX)
Lightweight, high-performance
HTML renderer for game and app
developers

updated 50 minutes ago

vibe-d
Event driven web and concurrency
framework

updated 12 hours ago

intel-intrinsics [
Use SIMD intrinsics with Intel
syntax, with any D compiler,
targetting x86 or arm. Like simde
updated 2 days ago

t r | gettext
* Internationalization compatible
gettext with the GNU gettext utilities.

updated 2 days ago

Newly added

ultralight (X

Lightweight, high-performance
HTML renderer for game and app
developers

created 50 minutes ago

atiny crypto library

created 2 days ago

libfive [31)

D bindings to libfive, a library and

set of tools for solid modeling,

especially suited for parametric
created 3 days ago

sd

D library for versatile object

serialization/deserialization,

supporting integral types, arrays,
created 5 days ago

g & & ©

86

Memory Management

e Flexibility in when we want to take
control of memory management.

e Safer code.

e Almost necessary for beginners.

e Allows me to relax a little.

|

Your PC rar into & problem and needs 10 restart, Werl restart for you.

YUY - e e s 6 i o i e @ o e

Y2 [EE—

87

How Much of D Did We Not Touch?

@safe, @trusted, @system, ...
Mixins

C style &s and *s

Local imports

Templates
Whatever’s in DIP1000

88

Wrap Up

Learning D is an incredibly valuable experience. The language is expressive,
powerful, and can be quite fun to use at times.

What'’s holding D back in our opinion is complexity through inconsistency and lack
of clarity.

While the language and ecosystem themselves are encouraging, inconsistencies
in documentation and a lack of examples for examples sake bring the barrier to
entry a bit too high for the casual programmer without a specific reason that
makes them want to try the language.

89

Moving Forward

Publish examples/toy programs outside of a project context.
Write articles that are not bound by the forums.
Update documentation.

o
[
o
e Keep programming in D.

90

Code For Our Project

e | ocated here: https://qithub.com/abstewart/DRaw

H abstewart / DRaw Public [\ Notifications % Fork 0 Y7 Star 0

<> Code () Issues 1 Pullrequests () Actions [Projects () Security [~ Insights

¥ master ~ ¥ 1branch ©1tag Go to file About

No description, website, or topics

abstewart Merge branch 'master’ of github.com:abstewart/DRaw ' f3bdec5 on Apr19 O 455 commits provided.
.github/workflows Fix unit tests not running any tests 4 months ago 0 Readme
A~ Activity
FinalProject Update README.md 4 months ago
Y Ostars
client-and-server Merge branch 'master' of github.com:abstewart/DRaw 4 months ago ® 1watching
executables/mac mac release executables for client and server 4 months ago % 0 forks
. Report repository
generated-docs adding Adrdox Documentation Generation 4 months ago
media Added DRaw Whimsical Diagram to the media folder. 5 months ago
Releases 1
support run_clients for windows 4 months ago
" © DRaw v1.0.0 (Latest)
D .gitignore Updated .gitignore. 4 months ago e A9 —
[DEV-README.md Add documentation about project structure and pull requests, begin i... 5 months ago

(3 README.md Update README.md 4 months ago Packages 91

https://github.com/abstewart/DRaw

Help
Chat Feature

Brush Type = Filled Arc v BrushSize 15 —_— + m ’h‘ *

hanks ¢

Ques'l'.ions?

Type Your Message Below

Send Message

DCONF '23

August 29 - September 1

A Semester at University: Learning Software
Engineering in DLang

Presenters: Andrew Briasco-Stewart, Elizabeth
Williams,Ben Mallett, and Steven Abbott

11:30 am-12:00 pm, Wednesday, August 30, 2023
Audience: Everyone in the D community

93

